Université de Bordeaux
photo

Alexey ZHUKOV - Thèse en cours


Identifiant ORCID 0009000905185474
Identifiant Hal https://hal.archives-ouvertes.fr/search/index/?q=%2A&authIdHal_s=alexey-zhukov
Compte LinkedIn https://www.linkedin.com/in/alexeyzhukovw/

Doctorat Informatique

- Université de Bordeaux

Ecole doctorale : Mathématiques et Informatique

Sujet : Fusion des données pour la reconnaissance des objets : application à la reconnaissance des défauts des rails

Mots-clés de la thèse : Fusion précauce,Fusion tardive,Fusion intermédiare,Apprentissage profond,Modèles d'attention,Technique d'explicabilité

Direction de thèse : Jenny BENOIS-PINEAU

Co-direction de thèse : Akka ZEMMARI

Unité de recherche : LaBRI - Laboratoire Bordelais de Recherche en Informatique UMR 5800 - Talence
Intitulé de l'équipe : Images et Son

Master - de Sciences, Technologies, Santé, Mention Informatique

obtenu en septembre 2023 - Université de Bordeaux
Option : Informatique pour l'image et le son

Production scientifique

- Alexey Zhukov, Jenny Benois-Pineau, Alain Rivero, Akka Zemmari, Mohamed Mosbah, Danilo Crispiani 2025. A Hybrid AI System for Fusion of Object and Context Information: Application to the Rail Line Defect Detection   , pp.1-7, https://hal.science/hal-04999579v1
- Alexey Zhukov, Jenny Benois-Pineau, Romain Giot, Romain Bourqui 2025. Explainable AI in Image Classification Tasks: How to Choose the Best?   , 69, pp.49-70, https://hal.science/hal-04999611v1
- Zhukov, Alexey; Benois-Pineau, Jenny; Giot, Romain; Bourqui, Romain 2025. Explainable AI in Image Classification Tasks: How to Choose the Best?   Emotional Data Applications and Regulation of Artificial Intelligence in Society, 49--70, https://doi.org/10.1007/978-3-031-80111-2_4
- Zhukov, Alexey; Benois-Pineau, Jenny; Rivero, Alain; Zemmari, Akka; Mosbah, Mohamed; Crispiani, Danilo 2024. A Hybrid AI System for Fusion of Object and Context Information: Application to the Rail Line Defect Detection   2024 International Conference on Content-Based Multimedia Indexing (CBMI), 1-7, https://doi.org/10.1109/CBMI62980.2024.10859237
- Alexey Zhukov, Alain Rivero, Jenny Benois-Pineau, Akka Zemmari, Mohamed Mosbah 2024. A Hybrid System for Defect Detection on Rail Lines through the Fusion of Object and Context Information   Sensors, 24, pp.1171, https://hal.science/hal-04684106
- Alexey Zhukov, Alain Rivero, Jenny Benois-Pineau, Akka Zemmari, Mohamed Mosbah 2024. A Hybrid System for Defect Detection on Rail Lines through the Fusion of Object and Context Information   Sensors, Volume 24, 1171, https://www.mdpi.com/1424-8220/24/4/1171
- Alexey Zhukov, Jenny Benois-Pineau, Romain Giot, Romain Bourqui, Luca Bourroux 2024. FEM and Multi-Layered FEM: Feature Explanation Methods with Statistical Filtering of Important Features   , 09, pp.295-327, https://hal.science/hal-04698686v1
- Hyeon Yu, Jenny Benois-Pineau, Romain Bourqui, Romain Giot, Alexey Zhukov 2024. Mean Opinion Score as a New Metric for User-Evaluation of XAI Methods   , , https://hal.science/hal-04698571v1
- Alexey Zhukov, Jenny Benois-Pineau, Romain Giot 2023. Evaluation of Explanation Methods of AI - CNNs in Image Classification Tasks with Reference-based and No-reference Metrics   Advances in Artificial Intelligence and Machine Learning, 03, pp.620-646, https://hal.science/hal-04698555v1
- Alexey Zhukov, Jenny Benois-Pineau, Romain Giot 2023. Evaluation of Explanation Methods of AI - CNNs in Image Classification Tasks with Reference-based and No-reference Metrics   Advances in Artificial Intelligence and Machine Learning, 03, pp.620-646,
- Romain Xu-Darme, Jenny Benois-Pineau, Romain Giot, Georges Quénot, Zakaria Chihani, Marie-Christine Rousset, Alexey Zhukov 2023. On the stability, correctness and plausibility of visual explanation methods based on feature importance   , , https://cea.hal.science/cea-04256974/document

Dernière mise à jour le 21 mai 2025