Retour à la liste

ED SMEMAG - Introduction aux méthodes de Boltzmann sur réseaux ». Théorie et applications diphasiques. [Participation : Présentiel]

Contact : cornay Nathalie
nathalie.cornay@centralesupelec.fr
Tél: 0175316910

Catégorie : Conforter la culture scientifique

Langue de l'intervention : français

Nombre d'heures : 16

Crédits/Points : 3

Min participants : 4

Max participants : 10

Nbre d'inscrits : 7

Nombre de places disponibles : 3

Public prioritaire : Aucun

Public concerné :
Tout doctorant de Paris-Saclay

Proposé par : Sciences Mécaniques et Energétiques, Matériaux et Géosciences


Lieu : CEA/Saclay, salle de formation du bât 451 (pièce 32)
Observations : Une séance de 3h15 par jour pendant 5 jours du 17 au 21 février 2025 nouvelles dates confirmées. Séance 1 (3h) : lundi 17/02 de 13h30 à 16h30 Séance 2 (3h15) : mardi 18/02 de 13h15 à 16h30 Séance 3 (3h15) : mercredi 19/02 de 13h15 à 16h30 Séance 4 (3h15) : jeudi 20/02 de 13h15 à 16h30 Séance 5 (3h15) : vendredi 20/02 de 9h à 12h15
Début de la formation : 17 février 2025
Fin de la formation : 21 février 2025
Date ouverture des inscriptions :
Date fermeture des inscriptions : 10 janvier 2025
Modalités d'inscription : en ligne sur ADUM: en bas de cette fiche

Objectifs :
La méthode de Boltzmann sur réseaux (“Lattice Boltzmann Method” – LBM) est une méthode numérique alternative aux méthodes traditionnelles (telles que les éléments finis, volumes finis, différences finies) pour simuler les équations de Navier-Stokes en version « bas Mach » ou « compressibilité artificielle » ou d'autres EDPs de type « Advection-Diffusion ». La LBM est très couramment utilisée dans les publications, et mise en œuvre dans des codes de recherche (e.g. LBM_Saclay, Palabos) et industriels (e.g. proLB, m-starcfd).
L'objectif de ce module est d'introduire les principaux concepts de la LBM et d’en pratiquer quelques-uns dans le code du CEA LBM_Saclay. Dans un premier temps, la méthode numérique de base sera établie, puis illustrée sur des cas classiques de la dynamique des fluides monophasiques couplés ou non à la température (cavité avec paroi défilante et convection naturelle). Ce schéma sera ensuite modifié et adapté à la simulation des écoulements diphasiques avec une méthode de suivi d'interface. Cette dernière sera modélisée, selon les applications, par la technique du «champ de phase» ou de la «levelset». Les exemples seront issus de l’hydrodynamique (e.g. double-Poiseuille, Laplace, instabilités de Rayleigh-Taylor, splash, etc.) et/ou de la science des matériaux (séparation de phase, maturation d’Ostwald, et croissance cristalline).
Les méthodes LBM seront décrites pour les écoulements diphasiques aussi bien incompressibles que compressible avec une loi d’état de type cubique (loi d’état de van der Waals et de Carnahan-Starling par exemple).

Programme :
Un programme approximatif est indiqué ci-dessous.
Séance 1 : introduction générale et bases de la LBM
• Cours : fondamentaux de la méthode et conditions aux limites.
• TD : similitude géométrique
• TP : installation et exécution de LBM_Saclay (compilation et description d’un jdd). Vérifications basiques (Poiseuille, gaussienne). Cas tests monophasiques.
Séance 2 : LBM pour Navier-Stokes incompressible et couplage aux éq de suivi d’interface
• Cours : méthodes LBM incompressibles et rappel sur les « modèles à champ de phase »
• TD : Nombre adimensionnels diphasiques (Nb d’Atwood, Bond, Capillaire, etc.)
• TP : cas test classique d’un écoulement diphasique (au choix : instabilité de Rayleigh-Taylor, splash, bulle ascendante, etc.)
Séance 3 : introduction aux développements de Chapman-Enskog et analyse des termes forces
• Cours : analyse de Chapman-Enskog et termes forces (ou sources)
• TD : applications aux équations de Cahn-Hilliard et Allen-Cahn
• TP : mise en œuvre dans LBM_Saclay et simulations de décomposition spinodale
Séance 4 : modèle diphasique par loi d’état (modèle de Navier-Stokes/Korteweg)
• Cours : rappel du modèle de Navier-Stokes/Korteweg et des méthodes LBM associées (approche « pseudo-potentielle »). Forme potentielle du tenseur de pression.
• TP : mise en œuvre dans LBM_Saclay, simulations et validations (ex. onde capillaire)
Séance 5 : une étude de cas au choix
• Croissance cristalline/dissolution
• Écoulement diphasique avec surfactant
• Écoulement avec changement de phase liquide/gaz

Pré-requis :
L'option s'adresse aux étudiants ayant un goût prononcé pour la modélisation physique, le calcul scientifique des EDPs, le calcul algébrique, et la programmation en C++.

Equipe pédagogique :
Alain CARTALADE (alain.cartalade@cea.fr), Hoel KERAUDREN (hoel.keraudren@cea.fr) et Téo BOUTIN (teo.boutin@cea.fr)

Méthode pédagogique :
Le module sera équilibré entre les cours théoriques qui permettront d'introduire les concepts (discrétisation de l’équation de Boltzmann, développements de Chapman-Enskog et opérateurs de collision) ; les TD pour en manipuler quelques uns (modification de la fonction d’équilibre) ; et enfin les TP pour les simulations. La programmation se fera en C++ dans une version pédagogique et allégée du code LBM_Saclay développé au CEA et accessible sur le gitlab. La validation des développements informatiques s’effectuera avec des solutions analytiques en python.

Compétences acquises à l'issue de la formation :
À l’issue de cette formation, l'étudiant aura acquis les connaissances de base de la LBM et de son utilisation pour la simulation d’écoulements diphasiques avec ou sans changement de phase. Il sera un utilisateur « averti » des codes LBM et sera capable d’adapter ses méthodes pour simuler ses applications.

Les Compétences et capacités visées à l'issue de la formation (fiches RNCP)

Arrêté du 22 février 2019 définissant les compétences des diplômés du doctorat et inscrivant le doctorat au répertoire national de la certification professionnelle. https://www.legifrance.gouv.fr/loda/id/JORFTEXT000038200990/

Bloc 1 : Conception et élaboration d’une démarche de recherche et développement, d’études et prospective

- Disposer d'une expertise scientifique tant générale que spécifique d'un domaine de recherche et de travail déterminé

- Identifier et résoudre des problèmes complexes et nouveaux impliquant une pluralité de domaines, en mobilisant les connaissances et les savoir-faire les plus avancés

Bloc 2 : Mise en œuvre d’une démarche de recherche et développement, d’études et prospective

- Mettre en œuvre les méthodes et les outils de la recherche en lien avec l’innovation

- Garantir la validité des travaux ainsi que leur déontologie et leur confidentialité en mettant en œuvre les dispositifs de contrôle adaptés

Bloc 3 : Valorisation et transfert des résultats d’une démarche R&D, d’études et prospective

- Respecter les principes de déontologie et d’éthique en relation avec l’intégrité des travaux et les impacts potentiels

- Mettre en œuvre l’ensemble des dispositifs de publication à l’échelle internationale permettant de valoriser les savoirs et connaissances nouvelles

Bloc 4 : Veille scientifique et technologique à l’échelle internationale

- Disposer d’une compréhension, d’un recul et d’un regard critique sur l’ensemble des informations de pointe disponibles

- Disposer de la curiosité, de l’adaptabilité et de l’ouverture nécessaire pour se former et entretenir une culture générale de haut niveau

Bloc 5 : Formation et diffusion de la culture scientifique et technique

- S’adapter à un public varié pour communiquer et promouvoir des concepts et démarches d’avant-garde


La formation participe à l'objectif suivant :conforter la culture scientifique des doctorants dans leur champ disciplinaire ou en interdisciplinaire


Retour à la liste